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A B S T R A C T   

Collaboration and research networks are nowadays central to innovation because they favor knowledge in-
teractions and complex approaches to challenging problems. This study explores the factors underlying the 
emergence and evolution of innovation networks in the past, using as example the case of Spain, a backward 
country regarding R&D performance. Combining, for the first time, historical patent data, social network 
analysis, and discrete choice regression techniques we test distinct institutional, geographical, and sectoral 
factors that triggered or hampered collaboration over the long term, i.e., the growth in the connections of in-
dividual co-patentees within innovation groups. The findings are relevant and demonstrate, inter alia, that in the 
Spanish case the length of intellectual monopolies did not foster collaboration, while geographical/technological 
diversification was key to enhance collaborative patterns in the past. The analysis also demonstrates that the 
likelihood of increasing collaboration over time depended on the initial level of connections (degree) the 
patentee had, confirming the existence of preferential attachment, even within the context of an emerging and 
disconnected network. However, belonging to larger innovation groups (size of the network components) did not 
promote per se greater interactions, suggesting that institutional weaknesses and backward innovation trends 
prevented the existence of positive payoffs from increased connectivity. The results have direct R&D policy 
implications for both nowadays developing countries and innovation leaders.   

1. Introduction 

Innovation networks and collaboration structures are drawing 
increased attention from the academy and R&D managers because 
nowadays the solutions to complex problems are almost impossible 
without the integration of distinct sources of knowledge and scientific 
fields (Owen-Smith and Powell, 2004; Breschi and Lenzi, 2015). Inter-
disciplinary collaboration favors disruptive advances, new approaches 
to existing challenges, or ambitious combinations of know-how that 
several authors call ‘recombinant capital’ (Carnabuci and Operti, 2013; 
Endres and Harper, 2019). Thus, the way people share and merge ideas, 
collaborate, or compete when fetching solutions to scientific or technical 
problems could make the difference between succeeding or failing (Baba 
et al., 2009; Cantner et al., 2016). 

To analyze collaboration, Social Network Analysis (SNA) is a key 
tool, as it provides an understanding of how agents are connected and 
how information is shared.1 Specifically, regarding R&D activities, SNA 
allows us to analyze the importance of innovation networks by studying 
their topological properties (see an overview in Phelps et al., 2012; and 
Pippel, 2013). Specialized literature that studies SNA and collaboration 
usually refers to patent data as the most suitable proxy to analyze 
innovation networks. Patents allow both the measurement of the out-
puts resulting from interfirm collaboration (see, for instance, Ahuja, 
2000; Almeida et al., 2011) and the construction of the networks 
themselves based on distinct ways of patent collaboration (see the 
literature review in the next section). In the latter case, scholars char-
acterize networks of co-patentees/co-inventors and relate them with 
economic, entrepreneurial, technological/sectoral, and geographical 
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variables to conclude the features driving the growth of collaboration 
and its outcomes. In doing so, network topological attributes such as the 
number of connections individuals have (known as degree in SNA), the 
size of the group to which they belong (component membership), or the 
emergence of large innovation clusters (giant components) turn into key 
variables. In general, studies working with SNA and patents are diverse 
in the methodology (depending on the focus of the study) but they have 
one thing in common: they work with recent patent data (from the 1970s 
onwards) and therefore with mature innovation networks. 

In this article, we offer in a novel way a long-term perspective of how 
cooperation to innovate emerged. Specifically, we delve into the origins 
and evolution of innovation networks using the case of the Spanish 
patent system between 1878 and 1939. This was a key stage for the 
Spanish economic development and industrialization, especially after 
the First World War (WWI). During this period, international agree-
ments on intellectual property rights (IPRs)—such as the Paris 1883 
Convention—were signed and Western economies progressively 
modernized their patent regimes to defend and promote true invention 
activity. Spain subscribed to these treaties and guaranteed basic pro-
tection, but maintained many characteristics of the first patent systems 
(patents of introduction, compulsory working clauses, etc.) in an 
attempt to foster innovation and technology transfer. This remained so 
during the whole period of our study and even until the Spanish entry 
into the European Union in 1986 (Sáiz, 2014). The historical data for the 
study come from the Spanish Patent and Trademark Office (OEPM), 
where we generated a specific dataset with 68,000 patent applications 
from residents (and linked non-residents) and with all the patentees 
disambiguated. 

To process this dataset and unveil its characteristics, we rely on SNA 
methods and develop a historical co-authorship patent network to 
analyze its topological properties. Specifically, we focus the investiga-
tion on the dynamics underlying the growth in the number of connec-
tions of the nodes and their component membership, which are vital 
aspects for any innovation network, because the literature concludes 
that the larger the nodes’ degree and the components’ size, the higher 
the flow of information among actors and throughout the entire net-
work—thereby increasing the likelihood of collaboration in innovation 
activities (see, for instance, Cantner and Graf, 2006; Schilling and 
Phelps, 2007). To study the growth of the degree of the nodes we 
construct the collaboration networks for: 1) a ‘Base period’ comprising 
from 1878 to 1914, i.e., from the Spanish new patent law during the 
Restoration to WWI; and 2) a ‘Cumulative Period’ from 1878 to 1939, i.e., 
the entire period from 1878 until the end of the Spanish Civil War. First, 
the notion of a cumulative period traces the patentee’s connectivity 
through time, thereby incorporating the know-how developed through 
successive patents. As any subsequent patent may draw from pre- 
existing knowledge (links), this is captured by our methodology. Sec-
ond, we consider only a baseline and a cumulative period because the 
Spanish innovation network was highly disconnected at the time, with 
increased connectivity taking place at a slow pace, which resulted in 
limited network dynamics. Therefore, considering more time windows 
does not allow us to capture a sufficiently large number of changes to 
study the determinants of collaboration. 

Then, we analyze key transitions from the base to the cumulative 
period associated with specific increments in the number of connections 
nodes have (Degree), determining the causes that drove collaboration in 
this emerging network. To study the main factors that facilitated or 
hampered collaboration among inventors we perform several regression 
analyses based on the Linear Probability Model (LPM) of the likelihood 
that patentees increase their degree of collaboration (see Section 4).2 

This allows us to identify the most relevant variables to explain either 

the emergence and development of complex connections—as Andersson 
et al. (2019) show for Sweden—or the prevalence of an immature and 
stagnated innovation network, such as occurred in Spain during the 
period studied. 

For instance, the technological diversification of patentees across 
industries and their knowledge absorptive capacity, along with their 
productivity (number of patents), have proven instrumental in trig-
gering collaboration. Besides these, other variables such as the number 
of assignments or the application for patents of introduction (enabling 
domestic innovation by transferring—copying—foreign technology) 
also have a significant effect in achieving higher connected components 
in the network. In the same fashion, presenting a larger number of 
connections in the base period increases the probability of widening 
connectedness in the cumulative period (a property of some networks 
known as preferential attachment). 

In contrast, patent duration or registering with a firm status 
hampered the formation of solid innovation hubs. Unexpectedly, nodes 
located in larger components of the network in the base period have no 
advantage in increasing connections in the cumulative period. As the 
literature highlights (Jackson, 2010, chaps. 6 and 11) collaboration has 
both benefits (e.g. access to new information) and costs (e.g. time and 
effort to maintain or extend links). Depending on the institutional and 
economic frameworks, actors may not have enough incentives to in-
crease collaboration, which seems to occur in the emerging Spanish 
innovation network during this key period. 

In general, our findings contribute to a better understanding of the 
historical backwardness of the Spanish innovation system and should 
prove useful in developing policies aimed at fostering social capital 
regarding R&D dynamics. Certain current key issues—such as the 
sources of collaboration and cooperation to innovate—deserve also to be 
analyzed historically and from evolutionary perspectives. For instance, 
patents of introduction or importation were common in many countries 
during the nineteenth century to foster industrialization, being pro-
gressively banned as innovation systems matured. The Spanish case 
demonstrates that this institution could facilitate basic cooperation to 
innovate through technology transfer, which, on the other hand, might 
delay institutional changes towards the promotion of true domestic in-
vention activity. In turn, this could increase the costs of cooperation to 
research and the formation of larger structures in the innovation 
network. Moreover, a central and serious policy implication is that 
patent length, i.e. the strength of the intellectual monopolies, did not 
facilitate collaboration. Assuming that cooperation is a necessary con-
dition for the development of successful innovation systems over the 
long term, then we provide additional evidence to think about the rec-
ommendations of scholars claiming to shorten patent length (Boldrin 
and Levine, 2009). Thus, this investigation offers new results not 
addressed by the previous literature on SNA and innovation networks, 
providing a long-term approach for latent topics in innovation studies. 
That is the case of the discussions on IPR optimal length, the role of 
knowledge absorptive capacities and multidisciplinary research, or the 
effects of spatial specialization and institutional environment on 
collaboration. Notwithstanding, further research in other emerging and 
mature innovation networks will be necessary to contrast our insights on 
the origins and evolution of the Spanish innovation system. 

The rest of the article is structured as follows. Section 2 reviews the 
literature on SNA with patent data; Section 3 describes in detail the 
Spanish patent system, the statistical sources, and the variables used in 
the study; Section 4 presents the models, specifications, and the LPM 
regression methodology applied; Section 5 provides results and discus-
sion; and, finally, Section 6 concludes. 

2. Innovation networks, SNA, and patent collaboration: a 
concise literature review 

The dynamics of innovation networks increasingly attract econo-
mists, business scholars, and other social scientists interested in 

2 See Drivas (2022, p. 249) and Sáiz and Zofío (2022, pp. 262–4) for recent 
applications of the LPM to explain the emergence of trademarks’ geographical 
specialization in Europe and Spain, respectively. 
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innovation studies and, specifically, in the circulation of knowledge, the 
hybridization of ideas, and the complexity of information flows (see, for 
instance, Fritsch and Kauffeld-Monz, 2010; Tedeschi et al., 2014). To 
address and understand these processes several scholars have drawn to 
SNA methodologies and often patent data to proxy innovation networks 
and interactions among agents. Scholars rely on the information con-
tained in the patents to construct the networks and analyze their 
structures and the role of collaboration on innovation performance.3 

The literature uses SNA and patents with distinct analytical objec-
tives but often converges in the methods to build the networks. The most 
common way is to study collaboration through co-inventors or co-pat-
entees’ networks. As patentees can be geographically located and pat-
ents/cites technologically classified (Jaffe et al., 1993), researchers can 
then combine complementary methodological approaches to explore a 
wide range of topics. The inventors/patentees are the nodes and the co- 
authorship within a patent are the links in the network. US patents have 
been the source of many studies related to the geography of innovation. 
Several of them weight the interactions between the co-inventor net-
works and spatial dynamics, such as agglomeration phenomena in cities 
and metropolitan areas that usually reinforce innovation results (Bet-
tencourt et al., 2007; Lobo and Strumsky, 2008; Breschi and Lenzi, 
2016), while others analyze network effects at US regional level or in 
specific innovative areas, such as Silicon Valley or Boston, highlighting 
the tension between social and spatial dimensions (Fleming et al., 2007; 
Fleming and Frenken, 2007). Several authors qualify these findings by 
introducing patent technological and sectoral analyses in US metropol-
ises to conclude that: i) spatial specialization benefits more from gate-
keepers (and indirect ties) than diversified cities (Breschi and Lenzi, 
2015), ii) the rise/fall of technological knowledge in cities is related to 
their existing technological base (Boschma et al., 2015) or iii) special-
ized areas associate with stronger social networks (both internal and 
external) rather than diversified ones (van der Wouden and Rigby, 
2019). 

An analogous analysis was developed for other countries using pat-
ent data from national offices and the European Patent Office (EPO). 
One of the most prolific lines studies R&D cooperation and its results in 
Germany including regional and technological/sectoral perspectives. In 
this case, the nodes are patent applicants in the national path and the 
links are common patents or inventors. Findings show that regional 
specialization in Germany enhances local cooperation compared to 
external ties (Cantner and Graf, 2004), that inventors’ mobility among 
regions is a key issue in understanding the networks as well as the role of 
public research centers (Cantner and Graf, 2006; Graf and Henning, 
2009), or that the regional knowledge base, on the one hand, and 
gatekeepers and external connections, on the other, strongly influence 
network structures and regional innovation systems (Cantner et al., 
2010; Graf, 2011; Graf and Krüger, 2011). More recently, related in-
vestigations and similar findings have been developed for regions of 
other European countries such as Switzerland, Italy, and Spain 
(respectively Coffano et al., 2017; Innocenti et al., 2020; Galaso and 
Kovářík, 2021). However, very few studies focus outside the US and 
European frameworks, i.e. on less developed areas of the world, except 
newly released studies for Latin America. Using Brazilian patents, de 
Araújo et al. (2019) depict regional interactions among inventors and 
show the key impact of external links for less innovative and lagging- 
behind areas. Likewise, using US patents granted to inventors from 
Latin American countries, Bianchi et al. (2021a, 2021b, 2023) construct 
international collaborative networks in the area and demonstrate the 
presence of sparce and highly fragmented structures, the weaknesses of 
intraregional links (i.e., among Latin American countries), and the 
crucial role of interactions with high innovative economies outside the 
region. All these approaches offer fresh insights with relevant 

implications for innovation policy in less-developed countries. In our 
historical analysis of the Spanish innovation network, we also include a 
set of geographical variables to determine whether regional technolog-
ical specialization and diversification of innovation activities foster or 
hinder collaboration. 

Additionally, few studies focus on how institutions affect collabo-
ration and innovation networks—although this is a key aspect to un-
derstanding networks’ structures, resilience, or evolution—and, 
therefore, there has been little opportunity to reflect on policy recom-
mendations and their consequences. For instance, Balconi et al. (2004) 
analyze co-inventor networks in Italy to differentiate open science and 
proprietary frameworks finding better connectivity and centrality for 
academic inventors (more related to the open science world) than those 
working in proprietary technologies; Cantner et al. (2016) study German 
governmental policies in renewable energies and find positive effects of 
such actions on related co-inventor networks, both on their size and 
structures; and, finally, Menzel et al. (2017) explore how institutional 
changes impact tie formation, inquiring into co-inventor relationships in 
ICTs during the dot-com bubble in one of the largest US industrial poles 
(the Research Triangle Park) with inconclusive results. Likewise, net-
works’ long-term dynamics are crucial to complete institutional ap-
proaches. However, there is a lack of historical studies on innovation 
networks and patent collaboration with only two recent papers. The first 
compares patent institutions and emerging co-patentee networks in 
Spain and Sweden from 1878 to 1914 (Andersson et al., 2019), finding 
common characteristics—like the networks’ general disconnection lev-
el—but certain key differences—such as bigger and better structured 
large components in Sweden as well as more openness to foreign in-
fluences. The second paper (albeit without using SNA) analyzes the US 
co-invention framework from 1836 to 1975, highlighting how collabo-
ration and complex knowledge were related over the long term and how 
co-invention soared from the 1940s onwards linked to increasing tech-
nological (and entrepreneurial) development (van der Wouden, 2020). 
In this investigation we extend the Spanish patent data used by Ander-
sson et al. (2019) to the 1914–1939 period, expecting a more connected 
and open network through increasing collaboration during the 1920s, a 
decade of industrialization and growth in the country. However, as we 
will see in the next sections, the network remains highly disconnected 
and closed. The lack of collaboration and cooperation to innovate seems 
to be a critical and long-term problem in Spain. 

Thus, there is a pressing need for further institutional and historical 
research on innovation networks and a challenging opportunity to bring 
new findings to existing literature. The analysis of long-term dynamics 
of collaboration patterns and the role of institutions completes and sheds 
new light on current discussions regarding the effect of cooperation on 
innovation processes and systems, which may also have potential policy 
implications for both innovative leading economies and technologically 
dependent countries or regions. In fact, many of the current scientific 
and technological leaders were in the past backward or developing areas 
that experienced a set of changes triggering and driving collaboration 
and complexity. In general, increasing connectivity reinforces access to 
information, pushes creativity, reduces opportunism and free-riding 
behaviors, and fosters knowledge spillovers, multidisciplinary cross- 
fertilization, and collaborative solutions to innovate (Ter Wal and 
Boschma, 2009; Schilling and Phelps, 2007; Fleming et al., 2007; Bet-
tencourt et al., 2007; Ter Wal, 2014; Breschi and Lenzi, 2015; Menzel 
et al., 2017). Other countries, however, had more problems developing 
competitive innovation systems and fostering knowledge creation and 
recombination, remaining in backward positions. 

In summary, using Spain as case study, this article is the first to 
analyze the remote roots of collaboration in an emerging innovation 
network and test the reasons for the backwardness of innovation sys-
tems. The findings contribute to the previous literature by identifying 
institutional and historical factors that trigger or hamper cooperation, 
which is relevant to current R&D policy-making not only in developing 
countries but also in leading economies. 

3 For known drawbacks and advantages of adopting patents as proxies of 
innovation see Griliches (1990). 
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3. Emerging patent collaboration networks: topologic analysis 
and stylized facts 

3.1. The Spanish patent system: characteristics, sources, and historical 
data 

The first Spanish patent laws of 1826 and 1878 established a patent 
regime based on a simple registration system, with neither previous 
technical exams nor oppositional proceedings. The patent office did not 
openly publish specifications and drawings and there were no specific 
patent jurisdictions. From the beginning, foreigners could register their 
inventions, but Spain passed compulsory working clauses (the obliga-
tion to produce the invention within the national borders) and patents of 
introduction (which allowed the registration of other’s inventions if they 
were not implemented in the country). It was a hybrid system designed 
to protect original inventors but especially to foster industrialization and 
technology transfer. Spain was one of the signatories of the Paris 
Convention for the international protection of industrial property in 
1883–1884, the base of the current international patent system. As it is 
well-known (Penrose, 1951), the negotiations provide general principles 
regarding national treatment for foreigners and priority rights for 
registering previous patents; temporal protection in international exhi-
bitions; and security that importing one’s own patented objects from 
abroad would not forfeit IPRs. However, the treaty did no prohibit 
controversial modalities such as patents of introduction or importation 
and also recognized the rights to maintain compulsory working clauses 
(Article 5) (a requirement that only from 1925 onwards could be over-
come by granting compulsory licenses). 

In fact, although Spain had already incorporated one-year priority 
rights in 1878 and passed modifications to meet the Paris agreement (for 
instance, the publication of an official gazette from 1886), it maintained 
both compulsory working clauses and patents of introduction up to 
1986, when it joined the European Union. Likewise, Spain kept on 
granting patents without previous technical examination and leaving 
the conflicts to the general jurisdiction until the end of the twentieth 
century. Moreover, the publication of patents did not include drawings 
and specifications and just the name of the applicant, place of residence, 
title of the invention, and date. During the nineteenth century, many 
other countries allowed patents of importation or compulsory working 
clauses, even developing discriminatory measures against foreigners 
(Lerner, 2000, 2005; Khan, 2013; Lehmann-Hasemeyer and Streb, 
2020). However, from the Paris Convention onwards, and especially 
throughout the twentieth century, the most advanced Western econo-
mies converged in a modern patent regime that reinforced domestic and 
international IPRs. This process generalized previous technical and 
novelty examinations and full recognition of the first and true inventors, 
abandoning those controversial modalities and clauses. International 
agreements such as the 1970 Patent Cooperation Treaty, or even the 
birth of the European Patent in 1973 work in the same direction. The 
actual anomaly in Spain was to maintain the spirit of the nineteenth- 
century patent regime until 1986, a signal of the country’s weaknesses 
in domestic R&D. 

To construct and analyze the Spanish emerging innovation network 
from 1878 to 1939 we use a historical database (Sáiz et al., 2008) 
available at the patent office, OEPM, from where we extract the patents 
applied for by domestic residents plus their non-resident co-patentees.4 

We use patent applications instead of patents because scholars have 
recently highlighted that using grants—as the previous literature 
does—may lead to incomplete social networks and estimation biases, 

something more critical in countries with previous technical examina-
tion (Goossen and Paruchuri, 2022). Historical patent documents are 
similar to modern ones but they differ both in their format (even with 
handwritten specifications in many cases) and certain data availability. 
For instance, for the period under analysis, there is patent-related in-
formation such as the patent type (invention/introduction); the dates of 
application, grant, or termination; the annual payments made to main-
tain the monopoly; whether the patent was assigned; or the international 
patent classification (IPC), among other administrative issues. Con-
cerning the patentees, there is the availability of personal data (e.g., 
gender), juridical status (independent/firm), place of residence, and, to 
a lesser extent, their professions. However, we cannot differentiate 
patent owners from inventors because patents were mainly registered by 
independents at that time—a category including inventors, manufac-
turers, technicians, investors, and alike. Hence, firms were still scarce 
among patentees during the nineteenth century, and their increasing 
presence during the first third of the twentieth century in Spain was 
mainly due to the arrival of foreign companies and corporations rather 
than to the participation of resident companies. Besides, firms usually 
patented alone, incorporating previous collaboration processes among 
agents that it is not possible to disentangle because patents did not list 
inventors separately yet. 

3.2. Variables in the dataset 

Table 1 shows the distribution of patents by the original variables in 
the dataset, i.e., unprocessed variables directly extracted from the his-
torical database. It consists of 67,758 patent applications registered by 

Table 1 
Distribution of patents by the original variables in the dataset.  

Variables N % 

Duration 67,758 – 
0–5 years 59,250 87.44 % 
6–10 years 5499 8.12 % 
11–15 years 1425 2.10 % 
16–20 years 1584 2.34 % 

Assignment 2539 3.75 % 
Patents of Introduction 13,162 19.43 % 
Sectors 67,758 – 

Aeronautics 412 0.61 % 
Agriculture / Farming 1706 2.52 % 

Arms industry 12,433 1.83 % 
Basic Metals 1869 2.76 % 

Chemical 3841 5.67 % 
Communications 591 0.87 % 

Construction 3213 4.74 % 
Electricity 2834 4.18 % 

Gas / Lighting 1254 1.85 % 
Lumber 720 1.06 % 

Machinery / Equipment 11,405 16.83 % 
Mining / Coal 578 0.85 % 

Non-Rail Transportation 2645 3.90 % 
Paper / Graphic Arts 2679 3.95 % 

Railway 938 1.38 % 
Sea Transportation 679 1.00 % 

Services 14,318 21.13 % 
Textile 9898 14.61 % 

Food, Beverages & Tob. 6766 9.99 % 
Unkown 171 0.25 %  

Patents in which at least one of the patentees is a: 
Firma 11,357 16.76 % 

Femalea 1326 1.96 % 
Non-Residenta 116 0.17 %  

a The same patent may be registered by several patentees, some of whom may 
exhibit these characteristics. 
Source: Authors’ calculations from Sáiz et al. (2008). 

4 See https://www.ibcnetwork.org/e_research_resource.php?id=3 and htt 
p://historico.oepm.es/patentes.php 
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34,663 resident patentees—plus linked non-residents (0.17 %)5—that, 
as expected, were mainly individuals (firms 16.76 %) and males (fe-
males 1.96 %). However, while this last variable is directly related to the 
commercialization of patent rights, ‘Duration’ is related to the degree of 
monopoly power granted by the patent (and therefore to the capacity of 
deterring competitors). Hence, owning enduring patents may have a 
double effect. It is a sign of economic success linked to useful and reli-
able technologies that may encourage further collaboration, but it also 
gives monopolistic power over a specific technical field that may act in 
the opposite direction. Notice that most of the patents terminated within 
5 years (87.44 %) while very few lasted >15 years (2,34 %)—and only 
1,18 % the maximum of 20 years. Likewise, 3.75 % of the patents were 
assigned during their lifespan. Spanish historical patents were classified 
according to subclasses of the International Patent Classification by 
reading the original specifications and drawings.6 Thereafter, following 
the typical demand-driven approach by Schmookler (1966), subclasses 
were grouped into sectors where inventions may have a commercial 
impact. The sectoral distribution of Spanish patents registered by resi-
dents differs from its international counterpart (Sáiz, 2014) as it was 
more concentrated in low-tech activities grouped in the ‘Services’ sector 
(21.13 %) and light industries such as ‘Textiles’ (14.61 %) or ‘Food, 
Beverages & Tobacco’ (9.99 %) while ‘Machinery/Equipment’ reached 
16.83 %. 

As stated, the patent data built by Sáiz et al. (2008) has been pre-
viously used by Andersson et al. (2019) in their comparison of the 
Swedish and Spanish innovation networks. However, while their study 
ended in 1914, we expand the timeframe to the end of the Spanish Civil 
War (1939), enlarging the sample from 25,785 patents before 1914 to 
67,758 up to 1939 (in both cases applied for residents plus linked non- 
residents). Notice that with the addition of new variables to the analysis, 
such as those derived from the inclusion of the geographical or sectoral 
dimensions, we lose a few observations that have no data for these 
variables (for instance, applicants with unknown place of residence or 
patents with unknown sectoral classification). 

3.3. Stylized facts on the Spanish innovation network in terms of 
collaborative components 

As patentees can increase their number of linkages over time, we 
focus our study on capturing the dynamics (evolution) of collaboration 
in the network. Thus, we use two periods: a Base period (1878–1914) 
between the new Spanish patent law and WWI; and a Cumulative Period, 
(1878–1939), until the end of the Civil War.7 This method allows 
capturing incremental changes in the number of connected nodes (be-
tween the base and the cumulative period) and their characteristics. In 
this respect, the links between co-patentees—established through a 
common patent—are kept during the entire cumulative period.8 Using 
SNA tools, we compute the degree and size of the components—to which 
individuals belong (membership)—for all patentees in the sample for 

both periods (counting the maximum number of related co-patentees in 
each period).9 In doing so, the first step is to create a square matrix of 
patent/patentee relationships with a total number of 73,823 rows and 
columns (73,823 × 73,823 matrix), allowing us to obtain the in-
teractions among innovators. This number of patent/patentee relation-
ships represents the sample for all our model regressions.10 

We identify the following stylized facts characterizing the topologi-
cal characteristics of the emerging Spanish innovation network.  

− Indefinite degree distribution: When studying node connectivity within 
networks, SNA typically confronts two theoretically opposite degree 
distributions resulting from alternative link formation rules: normal 
versus power-law distributions. These distributions are respectively 
consistent with network growth models following random connec-
tivity (Erdös and Rényi, 1959) and preferential attachment (Barabási 
and Albert, 1999). This last property establishes that the more con-
nected individuals are, the more likely they are to collaborate with 
others. Thus, preferential attachment is behind the emergence of flat 
tail degree distributions characterizing the so-called scale-free net-
works, where few nodes exhibit many links while the remaining are 
scarcely connected. Strictly speaking, preferential attachment is the 
principle where the probability of a new node attaching to an 
existing node is proportional to the degree of the existing node. In the 
regression specifications, we control for the existence of preferential 
attachment by including a covariate corresponding to the initial 
degree of the patentees in the base period. In doing so, we confirm 
that preferential attachment was at work in the Spanish innovation 
network. However, the degree distribution did not evolve into a 
power law, suggesting that, as commonly observed in large real- 
world networks (especially in an emerging stage), the actual distri-
bution lies somewhere between the domains of ‘pure’ random and 
‘pure’ scale-free distributions (see Jackson and Rogers, 2007).11  

− A low number of connections and size of components (clusters): The 
revised literature in Section 2 consistently highlights the positive role 
of network density and complex structures on innovation activity 
and performance (see, for instance, Breschi and Lenzi, 2016; Cantner 
and Graf, 2004; Lobo and Strumsky, 2008; van der Wouden and 
Rigby, 2019). However, the Spanish network remained highly 
disconnected. In the base period (1878–1914), the collaboration 
network had 2901 connected patentees, representing 19.84 % of the 
total nodes for the period (shown in the transition matrix for pat-
entees in Table A.1.2 of Appendix 1). Due to the low average degree, 
these connections took place in 1249 components. Both connected 
nodes and components are represented on the left side of Fig. 1. 
Regarding the whole sample in the cumulative period (1878–1939), 
the number of connected individuals rose to 7362, representing 
21.24 % of the total nodes, while the number of components 
increased to 3092 (both presented on the right side of Fig. 1). 
Although the relatively higher density of the cumulative network 
illustrates both an increase in the number of connections and the size 
of the components, this growth is rather limited. 

5 As far as we want to analyze only domestic clusters of collaborative in-
ventors, we drop out from the database all non-residents without links with 
residents.  

6 https://www.wipo.int/classifications/ipc/en/.  
7 As historiography usually does, we choose 1914 as a separating year in our 

analysis because WWI began, disrupting the socioeconomic activity of Europe. 
That was also a key issue for the Spanish economy. The neutrality in the war 
facilitated new businesses and expanded industrialization to intermediate and 
heavy sectors (driven both by external demand and a process of substitution of 
importations). This also activated new innovation processes.  

8 This implies that even if a patentee passed away or a firm disappeared, their 
collaboration activity with contemporaneous or posterior co-patentees is 
recorded in our dataset in a cumulative way. Therefore, a component in the last 
year (1939) may include co-patentees registering as early as the first year 
(1878), incorporating, in this way, previous knowledge or know-how and 
complying with the usual notion of innovation being a cumulative process. 

9 For computations, we rely on the igraph package of R (https://igraph. 
org/r/).  
10 Tabulating the 67,758 patents registered by 34,663 patentees into SNA 

format results in a matrix of 73,823 (patent/patentee) observations containing 
all the network relationships for the empirical analysis. The matrix of patent/ 
patentee relations contains one observation for each patentee registering a 
patent. For example, if a patent is registered by three patentees, it corresponds 
to three observations in the patent-patentee matrix.  
11 We have tested whether the observed degree follows normal or power-law 

distributions in the base and/or cumulative periods. For this purpose, we use 
the ‘jb’ (Jarque-Bera) and ‘pwlaw’ commands of Stata (for the latter, see Urzúa, 
2020). The results of these tests reject the null hypothesis that the degree dis-
tributions followed any of these two distributions in any of the two periods. 
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− Non-development of large components: No matter how disconnected an 
innovation network is, it is critical to analyze the presence of nodes 
with high degree connectivity that may result in large-size compo-
nents, characterizing mature innovation systems. In the base period, 
the most highly connected patentee in the network had 13 connec-
tions, creating also the largest component including 17 individuals. 
In the cumulative period, the most connected individual had a degree 
of 36, also belonging to the largest component agglutinating 42 in-
dividuals. The latter group evolves from the former with the same 
individual at the center of this star or ‘hub-and-spoke’ element. These 
numbers are not enough to talk about giant components in the 
collaboration network in Spain (Watts and Strogatz, 1998). There-
fore, collaboration in the network did not spread with enough den-
sity to reach more connected and complex elements, the key to the 
development of stronger linkages and larger or giant components 
that could foster R&D activities. Fig. 2, isolating the largest network 
components for both periods, shows this limitation.  

− Lack of network openness: SNA literature also highlights that openness 
to foreign ties is essential for innovation (see Lobo and Strumsky, 
2008; Whittington et al., 2009; Breschi and Lenzi, 2015). In Spain, 
non-resident innovators registering from abroad and linked to resi-
dent inventors were very scarce (only 74 of the 34,663 patentees 
were non-residents). Thus, the network was generally closed to in-
teractions with foreign patentees resulting in the absence of foreign 
direct and personal flows of know-how into the country. This illus-
trates the isolation of Spain concerning foreign collaboration and 
implies a loss of innovation opportunities and recombination possi-
bilities with local ideas, directly influencing the development of the 
collaboration network. 

These stylized facts reflect that the evolution of the network, in a 
period of remarkable economic development, is far from expected. Spain 
occupied a peripheral technological position in Europe, so determining 
what were the main characteristics that hampered collaboration is of 
utmost importance. Likewise, it is also relevant to find out what factors 
activated connections because cooperation can emerge and become 
stable over the long term just with a small cluster of individuals who rely 
on reciprocity (Axelrod, 2006, chap. 1). 

4. Modeling the growth of innovation networks by measuring 
transitions in connections 

4.1. Network growth models 

Network topologic analysis allows us to extract stylized facts about 
the Spanish innovation network. Now, to delve into the factors that 
influenced its evolution, we define a series of transitioning models 
relating the growth in the degree of the nodes to the characteristics of 
the patents and patentees observed in the base period: 

Yb,c
Model# = f (Patent/Patentee Factors,Network Factors,Geographic Factors,

Sector Factors)
(1) 

Yb,c
Model# is a binary variable capturing the growth in the degree of a 

node from the base period b (1878–1914) to the cumulative period c 
(1878–1939) if a specific threshold is met. If a patentee reaches the 
connection threshold established by a particular model (# = 1,2,3), the 
dependent variable adopts a unitary value, Yb,c

Model#= 1. Otherwise, if the 
threshold is not met, Yb,c

Model#= 0. We study specific thresholds that 
represent qualitative changes in the configuration and magnitude of 
connectivity in the network, related to both the increase in the degree of 
the actors and the emergence of large-size components. These are key 
drivers in the development of innovation systems as justified below (see 
Schilling and Phelps, 2007; Bettencourt et al., 2007; Ter Wal, 2014; 
Jackson, 2010): 

1) First, overcoming isolation is a pre-requisite for the emergence of 
any network (Barabási, 2010, chap. 4; del Fresno, 2015), so we analyze 
what we term ’Essential change’, associated with a patentee’s transition 
from being isolated in the base period (Degree = 0) to being connected in 
the cumulative period (Degree > 0). In the Spanish innovation network 
until 1914, <20 % of the patentees were connected in the initial period 
(see the transition matrix in Table A.1.2 of Appendix 1), and <6 % of the 
components (groups) were larger than three. Consequently, any sub-
stantial expansion of the innovation network requires, first, to overcome 
this generalized stage of initial isolation. We identify this change as 

Fig. 1. Patent network in Spain. Left: base period (1878–1914); Right: cumulative period (1878–1939). 
Source: Authors’ calculations. 
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Model 1, Yb,c
Model 1: (0; >0). The main incentives for independent patent 

holders to connect with others were twofold: search for financing and/or 
technical expertise. During the early industrialization processes the lack 
of capital was a compelling problem and many individual inventors 
sought financial support. One way to achieve this was by sharing the 
patent ownership with businessmen or manufacturers. It was usual to 
find single patentees associated in further patents with their financial 
partners. Likewise, as occurs nowadays, inventors could contact and 
cooperate in seeking technical complementarities to develop new ideas. 
Thus, there were also patents shared by two or more engineers with 
distinct backgrounds and expertise. All these kinds of financial or 
technical alliances could evolve into limited companies or other types of 
firms. However, corporate patenting was still scarce before the 1920s 
even in the most industrialized countries (Nicholas, 2010, 2011a), a 
phenomenon that progressively developed during the second half of the 
20th century.12 

2) Second, we compute the model ’Dyads and Triads’. This model 
addresses how paired co-patentees and trios are capable of consolidating 
collaboration even if within relatively small components. Looking at the 

transition matrices of the patent/patentee dataset of observations in 
online Appendix 1 (Tables A.1.1 for degree and A.1.3 for the size of the 
component), we observe that for already connected individuals (i.e., 
excluding Model 1), most of the observed transitions correspond to: a) 
individuals connecting from dyads (components of size 2 where mem-
bers have a degree of 1) into groups with 3 or 4 individuals (thereby 
increasing their degree to 2 or 3); and b) triads (either open or closed 
trios) increasing their degree from 2 to 3. Following the previous nota-
tion, we denote the first type of changes as (1; 2, 3), i.e., evolving from a 
degree of 1 into 2 or 3, and the second type as (2; 3). Therefore, we 
define a second model that studies these two types of changes aggre-
gately, i.e., Model 2, Yb,c

Model 2: (1; 2, 3) ∪ (2; 3). Realizing larger con-
nections, even if to this limited extent, represents both a qualitative and 
quantitative step forward in collaboration given the limited association 
levels that existed in the Spanish innovation network. Studying the 
factors determining these transitions is fundamental as they may trigger 
further growth resulting in the emergence of larger and more densely 
connected components. In addition to preferential attachment, we also 
note that the first type of transition, (1; 2, 3), embeds changes corre-
sponding to the realization of the principle of triadic closure, by which two 
individuals who are not directly connected but are associated with a 
common third individual, are more likely to connect among themselves 
than with other people. The transition from an open triad to a closed one 
naturally favors the emergence of community structures with larger 
components and fatter-tailed degree distributions (Bianconi et al., 2014; 
Kali, 2003).13 Collaboration with “partners of partners” eases long- 
distance connections and drives network evolution over time (Ter 
Wal, 2014). 

Fig. 2. Network’s largest components. Left: base period (1878–1914); Right: cumulative period (1878–1939). 
Source: Authors’ calculation. 

12 Many examples can illustrate the above statements. For instance, the well- 
known Spanish civil engineer Jorge Loring Martinez (https://es-m-wikipe 
dia-org.translate.goog/wiki/Jorge_Loring_Mart%C3%ADnez?_x_tr_sl=es&_x_tr_ 
tl=en&_x_tr_hl=es&_x_tr_pto=wapp), who specialized in aeronautics, patented 
on his own advances in airplanes before and after 1914 (Spanish patents 56,912 
of 1913 and 101,047 of 1927). However, between 1918 and 1923 he worked 
and collaborated with Claudio Baradat Guillé—a mechanical engineer and 
prolific inventor with expertise in combustion engines—and patented jointly six 
inventions related to aircraft engines and propellers (Spanish patents 68,049; 
70,669; 70,908; 71,433; 71,484; and 85,802). Claudio Baradat himself had 
individual patents mainly on cinematography, but he needed capital to develop 
his inventions related to automobile engines, so he associated with a busi-
nessman named Federico Esteve Anglada who supported him financially. There 
are 42 Spanish patents shared by Claudio Baradat and Federico Esteve from 
1921 to 1931. In fact, in 1922 a firm called Cortina, Baradat, and Esteve was 
created to manufacture automobiles (https://ca-m-wikipedia-org.translate. 
goog/wiki/Baradat-Esteve?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=es&_x_tr_pt 
o=wapp), although there are no Spanish patents granted to the company. 

13 In this regard, we have studied transitions from open triads to closed triads. 
There were 338 open triads in the base period, but none of the two unconnected 
individuals (or all three members) jointly registered a new patent that would 
have developed a direct link among them, closing the triad. This issue shows the 
low connectivity of the network and the poor collaboration dynamics in envi-
ronments unfavorable to innovation activities. 
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3) Third, and finally, we want to analyze in more detail the consol-
idation of larger connectivity levels responsible for the emergence of 
greater and, eventually, giant components. Thus, we study the transition 
to ’High connectivity’ consisting of individuals with four or more ties in 
the cumulative period: Model 3, Yb,c

Model 3: (1, 2, 3; >3). High connectivity 
within large components is important in innovation networks because it 
brings in unique capabilities, resources, and knowledge that can enable 
patentees to achieve their goals. A high level of connectivity can provide 
economies of scale, access to diverse markets, and contact with a wider 
range of specialized expertise. It can also help to attract new participants 
and stakeholders, increase the breadth and depth of knowledge sharing, 
and facilitate the transfer of technology and know-how. In addition, it 
increases the prospect of raising financial resources to fund R&D ac-
tivities and product (prototype) and process developments (Fleming and 
Frenken, 2007; Graf, 2012). Overall, transitioning from a low-density 
and fragmented innovation network like that existing in Spain to a 
more densely interconnected network through higher connectivity plays 
a crucial role in driving progress within innovation networks. As in the 
case of the previous model we choose this specific threshold based on the 
values of the transition matrices showing that a significant number of 
nodes with a degree larger than three emerge in the cumulative period, 
capturing a relevant number of shifts in connectivity (see, once again, 
Tables A.1.1 for degree and A.1.3 for the size of the components). In this 
model, we do not include transitions of isolated individuals with Degree 
zero in the base period because these changes are already studied in 
Model 1. Since leaving isolation accounts for most of the transitions, 
including this change would result in a largely overlapping sample, 
driving the regression results towards those of Model 1. Besides, Model 3 
allows us to rigorously test the existence of preferential attachment in 
the network (a necessary but not sufficient condition for the emergence 
of power-law distributions). This is accomplished through the inclusion 
of Degree and Component Size as explanatory variables given that Model 
3 is the only specification that exhibits sufficient variability in both re-
gressors. Indeed, the difference with Model 2 is that we consider all 
observed connectivity growth above three (>3) (i.e., at least four links). 
Although the difference may seem small quantitively, it is large when 
taking into consideration that the number of transitions of patentees 
starting with a degree of 1 or 2 to a degree of 2 or 3 (Model 2), is the 
same as those transitioning to a degree larger than 3. That is, while 
Model 2 studies the consolidation of collaboration among pairs and 
triads and into quartets, Model 3 focuses on the transition to degrees 
larger than 3 (that requires components with >4 individuals). Therefore, 
this model studies the emergence of high-degree individuals (also called 
Hubs), who play a key role in network growth by triggering links and can 
increase rapidly the average degree of connectivity, resulting in a more 
developed and densely connected network.14 

4.2. Models’ specifications: Explanatory variables to be included in the 
transitioning models 

The factors (covariates) included in the different models (1) are 
measured in the base period and grouped in the following specifications 
considering their incremental inclusion in subsequent regressions: 

Yb,c
Model#= f (AverageDurationof PatentsperPatentee(ADPP),Assignment,

Prolific,RelativeTechnonologicalDiversification(RTD),Firm
Importer,Female,Non − Resident,Degree,Component Size,
GeographicalSpecialization(RGTPS),Geographical
Diversification(RGTPD),Population(PatentsPC),Sector Dummy).

(2) 

1) Baseline specification: here we include the basic attributes related 
to the patent and the patentee as well as factors controlling for their 
characteristics within the network:  

− Average duration of patents per patentee, ‘ADPP’. Measures the average 
number of years that all the patents registered by the same patentee 
are alive, i.e., all observations for the same owner share the same 
value. This measure aims at capturing both the invention value 
(associated with economic and social success that may enhance 
collaboration) and the monopolistic power granted by patents 
(resulting in extra rents, which may be an incentive to deter further 
collaborations). Therefore, higher values of ADPP mean that the 
value of the intellectual monopoly generated with the grant of the 
patent is higher, and this issue may positively or negatively affect 
collaboration.  

− ‘Assignment’. Measures the number of assignments during the patent 
life. Provides a proxy for the commercial value of the invention. A 
patent generates revenues when someone takes a license to it and 
pays royalties. The number of assignments captures the willingness 
to pay by third parties for using a patent in their innovation activ-
ities, whose utility is revealed by the market value of the assignment. 

Combining the above two variables, we can conclude that a patentee 
with higher ADPP and patent assignments offers lasting inventions of 
relevant commercial value (Harhoff and Wagner, 2009).15 Thus, our 
focus is to observe if owning patents of higher value triggers 
collaboration. 

Other relevant factors facilitating increments in collaboration are the 
productivity of patentees and the technical breadth of their innovations:  

− ‘Prolific’. Measures the number of patents per patentee. The larger 
the number of patents an individual holds, the greater the likelihood 
that the patentee will increase his/her collaboration with new in-
dividuals in the future. Patentees owning a high number of patents 
exhibit unique characteristics, summarized in larger innovation 
experience, and cast positive spillovers (externalities) on other col-
laborators (Zacchia, 2018). Thereby they are catalysts in the inno-
vation networks. This feature is key to analyzing a network because 
prolific patentees can be seen as hubs in the innovation network, 
connecting individuals who may be separated in the product space, 
while fostering innovations (Granovetter, 1973).  

− Relative Technological Diversification, ‘RTD’. Measures the number of 
different technological/industrial sectors in which a patentee is 
present. In an emerging and historical network, we expect that the 
more diversified an inventor/patentee is, the higher their knowledge 
absorptive capacity and the possibility to create new links (Peters and 
Johnston, 2009). This variable complements the information in 
‘Prolific’, i.e., how active are individuals patenting, by capturing the 
breadth of the innovation across sectors.16 

14 We have also run regressions with transitions starting from lower degrees 
such as (1, 2; >2)—whose results are included in online Appendix 2 as a 
robustness check of those obtained for Model 3 (see Table A.2.2)—and for 
higher degrees (1, 2, 3, 4; >4), but in this last case the number of observed 
transitions reduces sharply, so we cannot draw reliable conclusions (results for 
this regression are available upon request). Therefore, we select degree >3 to be 
the relevant threshold. 

15 The interaction between ‘Average duration of patents per patentee, ADPP’ and 
‘Assignment’ is one of the crossed effects considered in an extended regression 
aiming at providing robustness checks of our regression results, see Tables A.2.2 
and A.2.3 in online Appendix 2.  
16 ‘Prolific’ and ‘Relative Technological Diversification, RTD’ are also interacted 

in our regression with crossed effects, see Tables A.2.2 and A.2.3 in online 
Appendix 2. 

S. Barbosa et al.                                                                                                                                                                                                                                 



Research Policy 53 (2024) 104990

9

Additionally, we identify the following variables as key character-
istics of the patentees:  

− ‘Firm’. Dummy variable indicating if the patentee is a firm. Firms can 
directly implement innovations in the market and exploit the in-
ventions, being able to recombine the existing technologies to create 
new knowledge and innovations (Carnabuci and Operti, 2013). 
Firms are crucial to investment activities (Rubens et al., 2011) 
because knowledge-sharing happens predominantly within organi-
zations due to proximity, frequency of interaction, etc. (Katz and 
Allen, 1982; Goossen and Paruchuri, 2022).  

− ‘Importer’. Dummy variable capturing if patentees rely on the so- 
called ‘patents of introduction’. This type of patent aims at protect-
ing foreign inventions in domestic markets at the expense of the 
original creators; thus, patentees holding only patents of introduc-
tion cannot be considered inventors, because they innovate through 
technology transfer. This variable is computed as the percentage of 
patents of introduction over all patents an individual owns.  

− ‘Female’. Dummy variable capturing the gender of the patentee. Only 
1.96 % of individuals were females (see Table 1), and most likely 
dependent on their male relatives. This gender dependency may 
induce co-patents and therefore the illusion of collaboration 
(Mauleón and Bordons, 2014).  

− ‘Non-Resident’. Dummy identifying if the patentee is established 
abroad. International connections work as major channels or ‘global 
pipelines’ that increase knowledge production (Singh et al., 2016). It 
has been shown that the lack of connectivity to the outside world is a 
reason to fall into lock-in non-innovative development paths (Gazni 
et al., 2012; Miguelez et al., 2019) 

We now consider the inclusion of two relevant network indicators of 
the patentees influencing the likelihood of transitioning17:  

− ‘Degree’. As stated in Section 3.3, in networks driven by preferential 
attachment the nodes with higher connections are more likely to 
make new links than those with lower degrees. Thus, this variable 
controls for this principle, by measuring the effect of the number of 
connections the patentees had in the base period. We expect a pos-
itive sign of Degree, meaning that the larger the initial value, the 
higher the probability of increasing collaboration.  

− ‘Component Size’. This variable controls the effect that the size of the 
components has on connectivity. It counts the number of individuals 
that belong to the component of each patentee in the base period. In 
this regard, in a qualified or blended version of the principle of 
triadic closure and preferential attachment, we expect that in-
dividuals belonging to large groups are more likely to increase their 
connectivity in the innovation network, because: a) slightly con-
nected members within the group already have a pool of commonly 
related patentees; and b) the larger the number of members in the 
group, the higher the access to technical information and the likeli-
hood of increased connection. 

Although the initial hypothesis for Degree and Component Size is a 
positive sign, it is necessary to highlight that link formation brings both 
opportunities and risks (Jackson, 2010, chaps. 6 and 11). On the one 

hand, the rise in connectivity and membership in large components 
yields benefits such as access to a greater pool of information and 
knowledge, as well as improved positioning within the network. On the 
other hand, collaboration has costs such as time and effort required to 
establish and maintain links, which can be determinant depending on 
the institutional environment and its weaknesses (degree of trust in 
partners, level of industrial piracy, effectiveness of the judicial system, 
etc.). Therefore, merely belonging to a larger component and gaining 
increased access to information may be not enough to enlarge collabo-
ration and could even be a disincentive to increase connectivity. In-
novators and patentees could leverage such knowledge to their 
advantage by taking a more selective approach to collaborations or by 
extracting and potentially free-riding technological information, etc. 
Moreover, in certain circumstances, once an agent achieves a certain 
level of connectivity, further increases may multiply the costs compared 
to the marginal benefits reversing the sign of these variables from pos-
itive to negative. This could help to elucidate specific institutional or 
economic limits for network connectivity, which in the Spanish 
emerging innovation network seems to occur with 5–6 connections. 

2) Geographic specification: We introduce in our model this dimension 
that has proven key in explaining the growth of innovation systems 
through geographical proximity and hubs. We compute three indicators 
that summarize information on the geographical distribution of patents 
by sectors, along with relative market sizes in the base period 
(1878–1914):  

− Relative Geographical and Technological Patent Specialization, ‘RGTPS’. 
Several studies show the positive impact on collaboration of ‘do-
mestic (or local) contributions’, highlighting the importance of the 
geographical dimension within a country to develop stronger link-
ages (Ortega, 2011). Following gravity models, knowledge ex-
changes intensify when actors are closer geographically (Sáiz and 
Zofío, 2022). By sectors, we construct an indicator of patent con-
centration that captures the relative importance of the province 
where the patentee operates to the national distribution of patents 
(see Table 2). We expect those patentees operating in provinces 
with—higher than the national average—sectoral patent concen-
tration, such as Madrid or Barcelona, to be more connected. The 
indicator is defined as follows: 

RGTPSb
s,p =

ShareRPb
s,p

ShareRPb
s,country

=

RPb
s,p

/
∑S

s=1
RPb

s,p

∑P

p=1
RPb

p,s

/
∑S

s=1

∑P

p=1
RPb

p,s

,

s = 1, ..., S, p = 1, ...,P.

(3)  

This expression shows the relative patent specialization in sector s 
of province p in the base period b, defined as the share of registered 
patents (RP) in that industry, location, and time, RPb

s,p, in the total 
number of registered patents in that province, divided by the share of 
registered patents in that sector at the national level, in the total 
number of patents in the country. If RGTPSb

s,p> 1, then province p is 
specialized in sector s because its share in the total number of patents 
in the province is greater than its corresponding share at the national 
level. Alternatively, if RGTPSb

s,p< 1, the province does not exhibit 
specialization.  

− Relative Geographical and Technological Patent Diversification, 
‘RGTPD’. This indicator informs about the degree of sectoral diver-
sification of a province compared with the national average. It is 
computed as the inverse of the sum of the absolute value of the 
difference between each s = 1, …, S sector’s share in each province’s 

17 Although in Model 1 (0; >0) the inclusion of ‘Degree’ and ‘Component Size’ is 
unnecessary because all observations, being isolated, are independent of each 
other and preferential attachment is not at work; this is not the case in subse-
quent models where the likelihood of developing a connection may depend on 
the initial degree and component size. Nevertheless, for Model 2 we decided 
against including these variables in the regressions because they are not useful 
to test the hypothesis of preferential attachment due to the lack of variability. 
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registered patents, and its share at the national level (Duranton and 
Puga, 2000).18 

RGTPDb
p = 1

/
∑S

s=1
∣ShareRPb

s,p − ShareRPb
s,country∣ (4)    

− Last, Relative share of patents per capita, ‘PatentsPC’. This indicator 
controls for the population at the provincial level and serves as a 
proxy of the relative market size where innovations take place. It is 
computed as the patents per capita in province p where the patentee 
operates, divided by the patents per capita at the national level—or, 
alternatively, the provincial share of patents divided by the provin-
cial share of the population 

PatentsPCb
s,p =

∑S

s=1
RPb

s,p

/

Popb
p

∑S

s=1

∑P

p=1
RPb

s,p

/

Popb
p,country

=
ShareRPb

p,country

SharePopb
p,country

,

s = 1, ..., S, p = 1, ...,P.

(5)    

2) Sector specification: Differences among technological sectors when 
considering collaboration through patents are also relevant. There-
fore, we control the different Sectors to which patents belong by 
defining the corresponding dummy variables, denoted by ηs in Eq. (6) 
below, for the different industries (see Table 1). The inclusion of 
these dummies intends to capture additional information related to 
sectoral characteristics beyond those already considered in the 
definition of the geographical variables. 

We summarize in Table 2 the information about the explanatory 
variables along with the expected relationship (sign) with the likelihood 
of transitioning and its rationale. 

Considering the compound matrix of patent-patentee interactions, 
Table 3 shows the descriptive statistics for the regression variables 
(excluding dummies). The statistics on the left-hand side correspond to 

Table 2 
Summary of regression variables, expected sign, and rationale.  

Variable Sign Rationale 

Duration (ADPP) Undetermined (?) Effect of monopoly power and dynamic allocative efficiency 
Assignment Undetermined (?) Effect of owning patents with market value 
Prolific Positive (+) Effect of having a portfolio of patents 
RTD Positive (+) Effect of having technologically diversified patents 
Firm Negative (− ) Effect of reducing transaction costs, hidden networks, … 
Importer Negative (− ) Effect of rent-seeking behavior to innovate through technology transfer 
Female Negative (− ) Effect of gender 
Non-Resident Positive (+) Effect of exposure to foreign innovation activity 
Degree Positive (+) Effect of preferential attachment (degree) 
Component Size Positive (+) Effect of belonging to large components 
RGTPS Undetermined (?) Effect of geographical specialization 
RGTPD Undetermined (?) Effect of geographical diversification 
Patents PC Positive (+) Effect of innovation activity at the geographical level  

Table 3 
Descriptive statistics of regression variables (patent/patentee data).  

Variable Base Period (1878–1914) Cumulative Period (1878–1939) 

N % Min. Mean Median Max. St. Dev. N % Min. Mean Median Max. St. Dev. 

ADPP 28,015 – 0 2.35 1.89 20 2.10 73,823 – 0 2.80 2 20 2.69 
Prolific 28,015 – 1 4.49 2 65 6.32 73,823 – 1 8.59 3 202 21.03 

1 9332 33.31 % 1 1.00 1 1 0.00 21,604 29.26 % 1 1.00 1 1 0.00 
2–5 12,476 44.53 % 2 3.02 3 5 1.07 30,049 40.70 % 2 3.05 3 5 1.07 
6–10 3289 11.74 % 6 7.57 7 10 1.35 10,522 14.25 % 6 7.65 7 10 1.38 
11–50 2918 10.42 % 11 19.09 17 45 8.26 9251 12.53 % 11 19.88 17 19 8.53 
51–100 65 0.23 % 65 65.00 65 65 0.00 1365 1.85 % 51 71.44 67 99 15.49 
>100 – – – – – – – 1032 1.40 % 103 153.96 149 202 31.57 

RTD 28,015 – 1 2.11 1.00 15 1.69 73,823 – 1 2.27 2 15 1.91 
Importer 28,015 – 0 0.18 0 1 0.31 73,823 – 0 0.19 0 1 0.32 
Degree 28,015 – 0 0.34 0 13 0.88 73,823 – 0 0.48 0 36 1.64 
Component Size 28,015 – 1 1.45 1 17 1.39 73,823 – 1 1.72 1 43 2.82 
RGTPS 28,015 – 0.36 1.37 1.02 24.83 1.37 73,823 – 0.08 1.34 0.99 115.16 1.77 
RGTPD 28,015 – 0.20 0.22 0.21 0.26 0.01 73,823 – 0.45 0.07 0.07 0.12 0.01 
PatentsPC 28,015 – 1.30 66.02 76.16 107.84 42.22 73,823 – 1.56 70.08 76.16 107.84 41.45 

Notes: All variables entering the regressions correspond to the base period (1878–1914). 
ADPP (average duration of patents per patentee); RTD (relative technological diversification of the patentee); Prolific (patents per patentee); Importer (% of patents of 
introduction over all the patents owned by the patentee); Degree (number of links of the patentee); Component Size (size of the component to which the patentee 
belongs); RGTPS (relative geographical and technological patent specialization); RGTPS (relative geographical and technological patent diversification); PatentsPC 
(patents per capita). 
Source: Authors’ calculations. 

18 ‘Relative Technological Diversification, RTD’ and ‘Relative Geographical and 
Technological Patent Diversification, RGTPD’ are also interacted in the regression 
with crossed effects to capture complementary interactions in the product and 
geographic spaces, see Tables A.2.2 and A.2.3 in Appendix 2. 
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the base period, thereby entering the regressions, while those reported 
on the right-hand side pertain to the cumulative period. The longest 
average duration of patents per patentee, ADPP, is the legal maximum of 
20 years, while the mean duration increases from 2.35 years to 2.80 
years. Regarding how Prolific the actors of the network are, most of the 
patentees own 5 or less patents (77.84 % and 69.96 %), while the most 
prolific patentees hold a total of 65 patents in the base period and 202 
patents in the cumulative period. The most diverse patentee registers 
patents in all 15 distinct sectors (RTD), and the mean number of sectors 
is rather low—although it slightly increases from 2.11 to 2.27, which 
along with the scarce number of highly connected Firms and Non-resi-
dents, bears witness to the technological and institutional deficits that 
affected the growth and economic development of Spain. In general, the 
descriptive statistics are similar in the base and cumulative periods. 

4.3. Econometric specification and estimation 

As previously mentioned, we define different dependent binary 
variables related to the evolution of the degree according to models 1 
thru 3. The general econometric specification is the following: 

Yb,c
Model# = β0 + β1ADPPb + β2Assignmentb + β3Prolificb + β4RTDb

+β5Firmb + β6Importerb + β7Femaleb + β8Non − Residentb

+β9Degreeb + β10Component Sizeb + β11RGTPSb
s,p + β12RGTPDb

s,p

+β13PatentsPCb
p + ηb

s + εb,c,

(6)  

where ηb
s is a dummy variable capturing sector-specific effects. 

Regarding the estimation method, SNA literature offers specific 
models to estimate network growth controlling for the topological 
characteristics of the network such as the temporal exponential random 
graph model (TERGM) and the stochastic actor-oriented model (SAOM), 
whose common precursor is the multinomial logit model. However, 
their methodological assumptions are rather limiting, while the infor-
mation requirements on the network structure are too demanding 
considering our available historical connectivity patterns (Leifeld and 
Cranmer, 2019). Thus, we decided on the linear probability model 
(LPM) as the one better suited among all the binary models, given our 
data restrictions.19 

5. Results and discussion: Estimated effects of the transitioning 
models 

The discussion of the estimation results is organized following three 
subsections, one for each of the transition models studying specific 
growth patterns of the innovation network, i.e., according to the spec-
ified dependent variable Yb,c

Model#, # = 1,2,3, as discussed in Section 4.1. 
Due to its relevance in explaining the emergence of collaboration, we 
discuss first the results of the ‘Essential change’ Model 1: (0; >0). Then we 
comment on the ‘Dyads and Triads’ Model 2: (1; 2, 3) ∪ (2; 3), studying 
the initial stages of connectivity growth. Finally, we turn to the ‘High 
connectivity’ Model 3: (1, 2, 3; >3). 

We present the estimation results for all models in Table 4.20 Col-
umns identified as [1.1], [2.1], and [3.1] show the results for each 
model in its ‘Baseline specification’ including the whole sample of 

observations except ‘Non-resident’ in [1.1].21 For instance, column [1.1] 
reports the results for the first model (0; >0) representing the transition 
from being isolated to being connected, considering the ‘Baseline speci-
fication’. Columns [1.2], [2.2], and [3.2] correspond to the ‘Geographic 
specification’ of each model. Finally, columns [1.3], [2.3], and [3.3] 
present the estimations for the ‘Sector specification’. This hierarchical 
presentation by model and specification eases the comparison between 
the different results. Also, as previously discussed, Model 3 includes the 
‘Degree’ and ‘Component Size’ variables intended to capture the likely 
existence of preferential attachment and the effect of belonging to large 
groups. 

The values of the coefficient estimates are presented for the sake of 
completeness. However, they cannot be directly used to interpret the 
magnitude of the effects of the variables on the probability of transition. 
To determine these magnitudes, we compare the value of the coefficients 
with the unconditional probability of transition in each model, i.e., the 
number of observed transitions divided by the number of cases that may 
potentially transition. For example, in the ‘Baseline specification’ of 
Model 1 [1.1], an increment in the average duration of patents per 
patentee, ADPP, equal to its standard deviation in the base period 
(1878–1914), decreases the probability of transitioning by 9.07 % of the 
unconditional value: − 9.07 % (= [− 0.000844 × 2.0978/0.01955] ×
100). Table 5 shows the results for these marginal effects. In what fol-
lows, when comparing the effects of the different regressors on the 
growth of the collaborating innovation network, we focus on these re-
sults as they are the ones that can be compared in a meaningful way. 

5.1. Overcoming isolation: ‘Essential change’ 

The first columns of Table 4 and Table 5 report the results for the 
models related to transitions overcoming isolation (Model 1 (0; >0)). 
Regarding the ‘Baseline specification’ shown in column [1.1], the two first 
variables are, as in the rest of the models, either negative (ADPP) or non- 
significant (Assignment). As previously shown, the measure of duration, 
ADPP, reduces the probability of transitioning by about nine percentage 
points, − 9.07 %. Therefore, the longer the lifespan of the patent, the 
lower the probability of seeking collaborations. In contrast, being a 
highly Prolific patentee encourages collaboration in a greater magnitude 
(11.87 %). The indicator of relative technological diversification (RTD) 
is significant in all the cases and has the expected positive value, largely 
fostering collaboration (57.61 %) and presenting the highest positive 
value of all variables in Model 1. The effect of Firm is significant and 
negative, as expected because firms are networks in themselves and, at 
that time, companies were not inclined to patent with individuals or 
other firms. In contraposition to RTD, Firm is the largest negative factor 
hampering collaboration in Model 1. Also, as expected, the fact that the 
patentee free-rides on foreign technology through ‘patents of introduc-
tion’ (Importer) does not help to overcome isolation. Nevertheless, this 
effect is not statistically significant. Another factor analyzed is the 
gender of the patentee (Female), which shows a negative albeit reduced 
effect. 

Focusing now on the ‘Geographical specification’ [1.2], patent pro-
vincial specialization RGTPSb

p,s is significant with a relevant effect of 
12.4 %. This shows that geographical clustering is key to explaining the 
emergence of first connections among agents.22 The positive effect of 
locating in a province specialized in the sector where the patentee 
operates is coupled, at this time of first industrialization, with the ex-
istence of a diversified environment where innovation activities take 
place. In this transitioning model, RGTPDb

s,p also presents a positive and 19 In this respect, the main drawbacks of the LPM are addressed in this study. 
We estimate the model with robust standard errors (Wooldridge, 2010, chap. 4) 
to control for heteroskedasticity. We also check if predicted values fall outside 
the unit interval (probabilities larger than one or negative). Online Appendix 2 
shows the reliability of the LPM model based on goodness-of-fit tests and post- 
estimation results.  
20 All estimations are carried out using Stata (version 15.1), https://www.stat 

a.com/. 

21 Patents from isolated non-residents are excluded from the dataset.  
22 The geographical issue is critical in Spain and should be studied in detail in 

further work. Specifically, in the base period from 1878 to 1914, approximately 
44 % of the patents were signed in Barcelona and 20 % in Madrid, the two main 
hubs of knowledge in the country. 
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Table 4 
Regression results of the transitioning models by specifications.  

Specification: Model 1 (0;>0) Model 2 (1;2,3) ∪ (2;3) Model 3 (1,2,3;>3) 

Basic +Geo +Sector Basic +Geo +Sector Basic +Geo +Sector 

Variable [1.1] [1.2] [1.3] [2.1] [2.2] [2.3] [3.1] [3.2] [3.3] 
ADPP − 0.000844** − 0.000935** − 0.000997** − 0.00400*** − 0.00354*** − 0.00354*** − 0.00202*** − 0.00180*** − 0.00189***  

(0.000406) (0.000418) (0.000409) (0.00118) (0.00123) (0.00126) (0.000466) (0.000436) (0.000481) 
Assignment 0.000407 − 0.000557 − 0.000396 0.0283*** 0.0287*** 0.0280** 0.0200* 0.0203* 0.0220**  

(0.0058) (0.00587) (0.00585) (0.0106) (0.0108) (0.011) (0.0103) (0.0104) (0.0104) 
Prolific 0.000487* 0.000415* 0.000411 0.00601*** 0.00595*** 0.00607*** 0.000610*** 0.000669*** 0.000697***  

(0.000272) (0.000247) (0.000268) (0.000808) (0.000828) (0.000865) (0.000223) (0.000247) (0.000254) 
RTD 0.0141*** 0.0143*** 0.0143*** 0.000885 0.00154 0.000796 0.00220** 0.00244** 0.00240**  

(0.00144) (0.00145) (0.00149) (0.00289) (0.00301) (0.00318) (0.000953) (0.00104) (0.00106) 
Firm − 0.0137*** − 0.0145*** − 0.0142*** − 0.0509*** − 0.0538*** − 0.0475*** − 0.00226* − 0.000553 − 0.00105  

(0.002) (0.00202) (0.00207) (0.00652) (0.00712) (0.00774) (0.00134) (0.00156) (0.00175) 
Importer − 0.00133 − 0.00223 − 0.00222 0.0189** 0.0166** 0.0169** − 0.000906 0.00135 0.00130  

(0.00208) (0.00223) (0.00223) (0.00752) (0.00815) (0.00817) (0.00207) (0.00168) (0.00188) 
Female − 0.00613** − 0.00647** − 0.00606* − 0.0135*** − 0.0130*** − 0.0107** 0.02400 0.00177 0.00214  

(0.00305) (0.00324) (0.00334) (0.00326) (0.00365) (0.00468) (0.0159) (0.00157) (0.00192) 
Non-Resident # # # − 0.0143*** – – − 0.00588** – –  

# # # (0.00446) – – (0.00271) – – 
Degree – – – – – – 0.0290*** 0.0299*** 0.0297***  

– – – – – – (0.00457) (0.00478) (0.00481) 
Component Size – – – – – – − 0.00123** − 0.00122** − 0.00122**  

– – – – – – (0.000517) (0.000546) (0.000535) 
RGTPSb

s,p – 0.00181*** 0.00181** – − 0.00287* − 0.00604** – − 0.000241 0.000134  
– (0.000684) (0.000805) – (0.00169) (0.003) – (0.000473) (0.000674) 

RGTPDb
s,p – 0.180** 0.153** – 0.543*** 0.669*** – 0.430*** 0.423***  

– (0.0708) (0.0725) – (0.163) (0.172) – (0.101) (0.103) 
PatentsPCb

p – 6.83E-05*** 6.39E-05*** – − 0.0000506 − 0.0000477 – 0.0000104 0.0000139  
– (0.0000235) (0.0000239) – (0.0000641) (0.0000652) – (0.0000298) (0.0000298) 

Aeronautics – – BASE – – BASE – – BASE 
Agriculture / Farming – – 0.00258 – – 0.0606*** – – 0.0255**    

(0.0197)   (0.0234)   (0.0115) 
Arms Industry – – 0.00675 – – 0.0767** – – 0.00653    

(0.0205)   (0.0388)   (0.00513) 
Basic Metals – – 0.0154 – – 0.0440** – – 0.0322**    

(0.0202)   (0.0206)   (0.0127) 
Chemical – – 0.00905 – – 0.00326 – – 0.0169***    

(0.0195)   (0.00789)   (0.00607) 
Communications – – − 0.0127 – – 0.0485 – – − 0.00350    

(0.0218)   (0.0300)   (0.00538) 
Construction – – 0.00451 – – 0.0569*** – – 0.00498    

(0.0195)   (0.0146)   (0.00303) 
Electricity – – 0.0104 – – 0.0302* – – 0.00866    

(0.0203)   (0.0155)   (0.00625) 
Gas/Lighting – – − 0.00118 – – 0.00172 – – 0.00465    

(0.0201)   (0.00981)   (0.00314) 
Lumber – – 0.00456 – – 0.0292 – – 0.00332    

(0.0211)   (0.0203)   (0.00391) 
Machinery / Equipment – – 0.00244 – – 0.0214** – – 0.0155***    

(0.0192)   (0.00835)   (0.00432) 
Mining / Coal – – 0.0077 – – 0.00280 – – 0.00949***    

(0.022)   (0.0164)   (0.0036) 
Non-rail transportation – – 0.0188 – – − 0.00151 – – 0.0208**    

(0.0208)   (0.0100)   (0.0103) 
Paper / Graphic Arts – – 0.00012 – – 0.00697 – – 0.0179**    

(0.0194)   (0.0107)   (0.00763) 
Railway – – 0.00197 – – 0.0355** – – 0.0253**    

(0.0203)   (0.0156)   (0.0127) 
Sea Transportation – – 0.0134 – – 0.0124 – – 0.0143    

(0.0221)   (0.0130)   (0.0116) 
Services – – 0.00908 – – 0.0362*** – – 0.0167***    

(0.0192)   (0.00831)   (0.0044) 
Textile – – 0.00492 – – 0.00641 – – 0.0115***    

(0.0191)   (0.0098)   (0.00332) 
Food, Beverages & Tob. – – 0.0042 – – 0.0219** – – 0.0114***    

(0.0193)   (0.00952)   (0.00438) 
Constant − 0.01084*** − 0.0565*** − 0.0565** − 0.0142*** 0.113*** 0.121*** − 0.0307*** − 0.128*** − 0.141*** 
Observations 21,637 20,809 20,747 5862 5526 5519 6094 5752 5744 
Positive Cases 423 423 420 205 205 205 54 54 54 
R-squared 0.036 0.037 0.037 0.09 0.092 0.099 0.039 0.043 0.047 

Notes: Robust standard errors in parenthesis; *, **, and *** represent significance at 10 %, 5 %, and 1 % respectively. 
Source: Authors’ calculations. 
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significant impact by increasing collaboration by up to 13.06 %, thereby 
in the same order of magnitude as its specialization counterpart. All 
these positive effects are reinforced by the market size. The estimated 
effect of PatentsPCb

p shows that the higher the number of patents per 
capita in relative terms to the national average, the larger the likelihood 
of increasing connections, which is similar in magnitude to the previous 
two geographical variables, 14.42 %. 

Finally, and quite surprisingly, the dummies in the ‘Sectoral specifi-
cation’ [1.3] are not significant. A possible explanation is that all rele-
vant information for this first ’Essential change’ model is already 
embedded in the geographical variables, which include the sectoral 
distribution of patents across locations. Nevertheless, this result suggests 
that the collaboration dynamics to overcome isolation were independent 
of specific technological fields, reinforcing the idea that the main in-
centives to establish links lay in the general necessity of financial or 
technical support. 

5.2. ‘Dyads and Triads’ model 

Columns [2.1] to [2.3] in Table 4 and Table 5 show the coefficient 
estimations and the marginal effects related to the growth of ’Dyads and 
Triads’ in the innovation network (Model 2; (1; 2, 3) ∪ (2; 3)). As in the 
previous model, for the ‘Baseline specification’, we observe first that the 
magnitude of duration, ADPP, remains negative doubling its effect for 
the ’Dyads and Triads’ model: − 20.01 % in column [2.3]. Now this 
variable is the main negative covariate of the model. However, a similar 
effect is observed in how Prolific the patentee is, whose positive effect 
triples from the initial ‘Essential change’ model. Specifically, the value of 
this variable increases from 11,87 % in [1.1] to 34.54 % in [2.1]. In 
contrast, a substantial reduction is observed in the coefficients of rela-
tive technological diversification (RTD), whose values in Table 4 are two 
orders of magnitude smaller than in Model 1 and lose statistical signif-
icance. Additionally, Firms keep hampering growth in collaboration, 

Table 5 
Estimated effects of the transitioning models by specifications. 

Notes: Marginal effects measure the percentage variation in the probability of transition to the unconditional probability of transition (last row). Figures not reported 
(~) are not statistically significant as indicated in Table 4. The length of the color bars represents the relative (proportional) value of each variable compared to 
others within each specification. 

Source: Authors’ calculations 
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maintaining its negative effect at similar levels, − 16.35 % in [2.1]. 
Regarding ‘patents of introduction’—and contrary to our expect-
ations—Importer now emerges as a catalyzer of collaboration: 16.75 % in 
[2.1]. Female remains about the same value at − 4.77 % in [2.1], while 
Non-Resident (at − 1.74 %) does not increase the likelihood of increasing 
connectivity—supporting the notion that the Spanish network lacked 
openness to foreign ideas (see the last stylized fact above). 

Considering the ‘Geographic specification’, we observe a reversal in 
the sign of the geographic and technological specialization RGTPSb

p,s 

from positive to negative, while PatentsPCb
p turns non-significant to 

explain transitions to higher connectivity. This suggests that once the 
basic connectivity threshold represented by Model 1 (0; >0) is met, 
when considering the step increments in connectivity in Model 2 the 
overall positive effects of the three locational variables wane. Only the 
positive effect of geographic and technological diversification remains. 
Finally, the inclusion of sectoral dummies [2.3] shows that the proba-
bility of transition to these relatively small components increases in 
several sectors, with remarkable values in services (38.95 %), followed 
by construction (32.38 %) and the arms industry (30.52 %), where 
collaboration to innovate could be key. However, the probability of 
transition also grows for other sectors technically less complex although 
economically very relevant during the first industrialization processes, 
especially in latecomers, such as ‘Agriculture/Farming’ (26.17 %), as well 
as its processed byproducts in the sector of ‘Food, Beverages & Tobacco’ 
(17.96 %). 

5.3. ‘High connectivity’ model 

The results corresponding to the three specifications of the model 
studying transitions to all possible higher degrees, Model 3 (1, 2, 3; >3), 
are reported in columns [3.1], [3.2], and [3.3] of Table 4 (coefficient 
estimates) and Table 5 (estimated effects). Determining the factors that 
contribute to the development of highly connected individuals is central 
to the emergence of densely connected networks. As before, the larger 
the lifespan of the patents, ADPP, the lower the incentives to collaborate. 
The increase in the negative value of the variable (− 47.87 % in column 
[3.1]) compared to those of the previous models, greatly reinforces the 
result that the monopoly power granted by patents hampers collabora-
tion. Here, the variable Assignment turns significant and positive (as 
expected, being an indication of the commercial value of patents), while 
being a Firm, Importer, or Female loses significance (albeit firms continue 
to be detrimental to external collaboration growth as innovation usually 
takes place in-house). Also, Non-Resident turns significant, reaching a 
negative value of − 2.83 %. 

Although preferential attachment seems to foster connectivity in the 
entire network, we use this model to reliably test the presence of this 
feature by considering all potential transitions to degrees >3. The pos-
itive and significant value of Degree—approximately 30 % in all three 
models and second only to Assignment—confirms that the higher the 
degree in the base period, the larger the probability of increasing con-
nections, supporting the hypothesis that preferential attachment is at 
work. However, the variable Component Size presents a negative and 
significant value (− 3.87 %). Thus, belonging to larger components in 
the base period does not ensure increased collaboration levels and 
higher degrees. These results reinforce the notion—exposed in Section 
4.2 when commenting on this variable—that there exist counteracting 
dynamics against connection increases. Collaboration has both benefits 
and costs and, in this case, the technological and economic opportunities 
brought by the membership to larger components did not compensate 
for the efforts of establishing and maintaining new links. Hence, we 
hypothesize that the Spanish institutional and historical scenario nega-
tively affected the formation of larger and more solid hubs. This must be 
confirmed by further studies on the effect of membership size in other 
innovation networks. 

The inclusion of the geographical variables qualifies previous results 

obtained for the ‘Baseline specification’ for the variable of relative 
diversification (RGTPDb

s,p), whose value increases to 66.41 %, while the 
other two (RGTPSb

p,s and PatentsPCb
p) are, once again, non-significant. 

Finally, the ‘Sectoral specification’ confirms the robustness of the secto-
ral dummies mentioned in the previous model, especially in low-tech 
activities such as ‘Agriculture/Farming’, ‘Food, Beverages & Tobacco’, or 
‘Services’, but also key heavy industries such as ‘Basic Metals’, ‘Machin-
ery/Equipment’; or ‘Railway’, that strongly grew in Spain after 1914. 

5.4. Robustness checks 

We conclude this section by referring the reader to online Appendix 2 
where we provide a general evaluation of the goodness-of-fit and post- 
estimation results of the above regressions. Besides this, we have also 
run two additional models to determine the robustness of the results. 
First, we consider a ‘High connectivity’ model similar to Model 3 but 
considering transitions from 1 or 2 degrees to >2; i.e., Model 3′ (1, 2; 
>2). Second, we also check if the previous results for all three complete 
specifications (+Sector) in Models 1, 2, and 3 are robust to the intro-
duction of crossed-effects among the basic variables to account for 
possible interactions among them. We find that results for these two 
additional specifications confirm the sign, value, and significance of the 
variables in the three models discussed in the previous sections. A dis-
cussion of the estimated results, including regression coefficients and 
marginal effects, can be found in online Appendix 2 (see Tables A.2.2. 
and A.2.3). 

6. Conclusions 

Collaboration is a key issue in fostering knowledge creation and 
innovation processes. During the last decades, studies on co-authors of 
scientific articles or co-inventors of new technologies have grown 
exponentially, reflecting the increasing interest of scholars in the causes 
of cooperation and their effects. Several of those researchers rely on SNA 
methods and patent data to explore the structural dynamics of innova-
tion networks. Their findings demonstrate that increasing network 
connectivity reinforces access to information, creativity, technical cross- 
fertilization, and collaborative solutions to innovate, while isolation 
works oppositely. In general, this literature focuses on contemporary 
cases in the most advanced economies and, therefore, on mature 
networks. 

In a novel way, this work combines historical patent files, SNA 
techniques, and discrete choice regressions to delve into the origins and 
evolution of collaboration and innovation networks in Spain, a country 
with traditional backwardness in R&D production. Thus, we focus the 
investigation on the emerging state of a network, when isolation and 
disconnection prevail. The main goal is to study the factors that initially 
triggered or hampered collaboration in the past because those first steps 
are critical to understanding the long-term divergence in cooperation 
structures and performance among distinct national innovation systems. 
Hence, the analysis provides new and fresh insights regarding the dy-
namics of innovation in less developed economies, while providing 
relevant policy implications for both technologically dependent areas 
and innovative leading countries. 

The research methodology begins with the construction of the his-
torical innovation network and its detailed topological analysis, based 
on patents registered in Spain from 1878 to 1939, during a key stage of 
the country’s modernization process. During this period, Spain had a 
hybrid patent regime that met the basics of the 1883 Paris Convention 
for the international protection of IPRs but maintained early-nineteenth- 
century characteristics to foster industrialization and technology trans-
fer such as patents of introduction or compulsory working clauses. Then, 
we study the transitions in the actors’ links (degree) from the first period 
(1878–1914) into the cumulative period (1878–1939) by specifying and 
estimating a linear probability model on the explanatory factors. We 
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analyze three models (with three distinct specifications each, progres-
sively introducing geographical and sectoral variables): 1) ‘Essential 
change’, from being isolated to establishing links; 2) ‘Dyads and Triads’, 
the evolution from 1 to 2 connections to 2–3 links; and 3) ‘High con-
nectivity’, the transition of connected actors to 4 or more links. 

The conclusions are relevant and straightforward. The literature on 
SNA and innovation highlights the key role of increasing network den-
sity and openness—i.e. external collaboration—to innovation. However, 
the topological analysis of the Spanish case shows a scattered and 
disconnected network with a modest evolution without very large or 
giant components. Although this may be common to the first steps of 
innovation networks in the past, the results for Spain confirm a critically 
slow growth of connectivity throughout time compared to other suc-
cessful innovative countries (see Andersson et al., 2019; van der Wou-
den, 2020) and, especially, a closeness to foreign collaboration in R&D 
through common patents (just 116 patents linked residents with non- 
residents). The absence of foreign interactions prevents not only the 
quick penetration of new scientific and technical information but also 
the cross-fertilization and merging with local ideas.23 Therefore, the lack 
of collaboration density and openness seems a key issue for the under-
standing of the backwardness of an innovation system. Indeed, recent 
studies focusing on current technologically peripheral coun-
tries—particularly within the Latin American region—have unveiled 
similar characteristics to the Spanish case a century ago. Most of these 
developing countries show sparse patent networks, with highly frag-
mented structures and no giant components (Bianchi et al., 2023). 
However, unlike Spain in the past, today’s Latin American networks 
evolved towards a clear outward orientation, increasing their connec-
tions with inventors in other regions. This could be explained by the 
current globalization process—which facilitates cross-border in-
teractions and knowledge exchange—and, above all, by the methodol-
ogy used to build these patent networks. The study extracts Latin 
American patentees/inventors from U.S. patents, i.e., from the first 
worldwide market for technology where international collaboration is 
more plausible. Although further research on backward regions is 
needed, the results confirm that weak innovation systems are charac-
terized by less densified R&D/patent networks and lack of cooperation. 
Thus, understanding the mechanism that drive collaboration to innovate 
is critical. 

In our investigation, the analysis of degree transitions within the 
Spanish network—although it is slightly nuanced according to each 
model and specification—provides interesting findings concerning the 
explanatory factors to cooperate: First, there is a consistent negative 
effect of patents’ duration on collaboration (ADPP), outweighing the 
possible positive effects attributed to the quality of the inventions they 
protect. This is a relevant issue because significant economic literature 
has reflected on distinct policies concerning optimal patent length and 
breath and their consequences on R&D management (see, e.g. Gilbert 
and Shapiro, 1990; Scotchmer and Green, 1990; O’Donoghue et al., 
1998) and several resolutely recommended to shorten patent length, 
especially if market size increases in time (Boldrin and Levine, 2008, 
2009, 2013). Our work reveals a new and unintended consequence of 
intellectual monopolies: they hamper collaboration to innovate. Indeed, 
scholars have also highlighted that increasing market power (as that 
granted by patents) diminishes incentives to innovate individually or 
through joint ventures (Cabral, 2000, chap. 16; Motta, 2004, chap. 2). 
Therefore, assuming that collaboration is a prerequisite to achieve 
successful innovation systems over the long term, then shorter patents 
and lower barriers to knowledge use and recombination may facilitate 

R&D cooperation and increase innovation results. Further research is 
undoubtedly needed to confirm this. 

Second, being a firm brings a consistently negative effect on 
collaboration in most models and specifications. A company is a kind of 
‘hidden network’ itself and, at least in the past, they seem to reject 
external collaboration with third parties, as innovation activities taking 
place inside the firm reduce transaction costs. Furthermore, evidence 
from US R&D companies reveals that the propensity to directly patent 
and employ researchers in their R&D departments—as a way to inter-
nalize collaboration—dramatically increased during the first third of the 
twentieth century (Nicholas, 2011b). This signals the path towards a 
‘corporate’ patent system where cooperation mainly occurs within the 
firm’s R&D sections, although—nowadays—it can also spread either 
through research ventures among corporations or through interactions 
of (free-lance) scientist/inventors working for distinct companies, which 
gives place to the mature patent networks that the literature analyzes. 

Third, and in contrast, another set of variables increases the proba-
bility of transitioning to higher degrees and favors collaboration. That is 
the case of the patentee’s productivity, measured by the number of 
patents (Prolific), positive in all the models and specifications. Likewise, 
the patentee’s technological diversification, measured by the distinct 
sectors where they patent (RTD) has a positive effect (although it loses 
significance in Model 2). Hence, more patent applications in more 
diversified fields benefit collaboration (corroborated by the crossed ef-
fect of these two variables in Tables A.2.2 and A.2.3 in online Appendix 
2). In essence, the positive sign of innovation productivity and, espe-
cially, RTD suggests that higher levels of sectoral diversification corre-
spond to an enhanced ability to engage with diverse knowledge, i.e. an 
increasing absorptive capacity that favors cooperation and more complex 
innovations. ‘Patents of introduction’ (Importer)—a form of protection 
that essentially allows free-riding on foreign technologies—results in 
small increments of degree just in Model 2, reflecting an ambiguous 
effect more related to technology copying than to invention activities. 
This kind of patent was common in almost all countries during the 
nineteenth century but was progressively abandoned to reinforce the 
protection of true inventors. Spain maintained patents of introduction 
and other weak characteristics (lack of previous technical exams, etc.) 
until 1986, with the intention of promoting innovation through tech-
nology transfer. In light of the true nature of the increased coopera-
tion—aimed at copying rather than inventing—this institutional setting 
seems to have weakened the R&D system by deepening the country’s 
scientific and technological dependence over the long term. Addition-
ally, these kinds of institutions may generate socio-cultural dynamics of 
collaboration that do not promote creative effort, Schumpeterian 
entrepreneurship, or scientific meritocracy, which characterize devel-
oped R&D systems. These attitudes are historically path-dependent and 
difficult to reverse. For instance, in the period under analysis there were 
few institutions, associations or specialized publications in Spain aimed 
at promoting science, inventive activity, and research (and those that 
did exist had little social or political relevance). However, these kinds of 
organizations and publications were key and socially prominent hubs for 
connecting researchers, professionals, and companies in pioneering 
countries, as was the case with the British Royal Society, the French 
Académie des Sciences or the journal Scientific American in the United 
States, to cite a few examples. 

Fourth, the geographical analysis shows that to overcome isolation 
(Model 1) and regarding the location where the patentee operates, both 
provincial sectoral specialization (RGTPS) and diversification (RGTPD) 
have positive effects on the probability of connecting. Howe-
ver—supporting what the literature shows for mature networks (Cant-
ner and Graf, 2004; Breschi and Lenzi, 2015; van der Wouden and Rigby, 
2019)—once connected (Models 2 and 3) spatial specialization does not 
influence and—in tune with our previous findings regarding patentee’s 
technological diversification (RTD)—the geographical diversification 
affects positively (again, this is confirmed in Tables A.2.2 and A.2.3 
when we analyze the crossed effect of RTD × RGTPD). Finally, the 

23 This lack of openness seems to be a long-term characteristic of the Spanish 
R&D system. For instance, the percentage of foreign scholars in Spanish uni-
versities in 2017 was the 2.1 % compared to 13.5 % in Sweden, 17.5 % in 
Denmark; 27 % in the United Kingdom, or 43 % in Switzerland (European 
Commission, 2017, p. 103) 
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existence of large markets, proxied by population (PatentsPC), favors 
cooperation at least to abandon isolation (Model 1), while operating in 
specific sectors has also a positive effect on being increasingly connected 
after overcoming isolation. That is the case of low-tech but significant 
economic activities at the time, such as agriculture and farming; food, 
beverages, and tobacco industries; or the service sector; as well as 
heavier key industries such as the production of basic metals; machinery 
and equipment; or the railway. 

Finally, once demonstrated that emergent collaboration follows 
preferential-attachment paths (through the inclusion of a Degree covar-
iate for measuring the effect of the actors’ previous links in increased 
connectivity), we also expected a positive effect of the size of the 
component to which patentees belong on the probability of transitioning 
(as the larger the component the greater the potential flow of knowl-
edge, information, and opportunities). However, in this case, ‘size does 
not matter’. At least in the Spanish emergent innovation network, being 
a patentee in a large component does not have positive effects on con-
necting people. This suggests that the expected marginal benefits of 
increased connectivity (due to the possible gains in access to information 
or positioning in the network) did not compensate for the incurred costs 
(due to the weaknesses of the institutional environment). This duality 
aligns well with our results above on how the negative effect on coop-
eration of strong patent monopolies can nullify the advantages of being 
the inventor of pioneering and relevant technologies. These opposing 
forces are intricately tied to institutional contexts and power dynamics, 
encompassing both positional interest within the network (where larger 
components assume greater centrality) and exclusionary capacities 
(stemming from enduring IPRs). Although all these results are robust, it 
is necessary to conduct further research in other innovation networks 
and contexts to confirm our findings. 

To sum up, if cooperation is critical to improving the scale and scope 
of R&D activities elsewhere, and especially in backward countries or 
regions, then our findings suggest, from a research policy-making 
perspective, to reflect on the impact of excessive duration of IPRs and 
also on institutional weaknesses (as effective and short protection may 
enhance collaboration); to encourage multidisciplinary thinking and 
diversity, both technologically and geographically (including interna-
tional dimensions); and to carefully analyze and balance both the 
entrepreneurial and independent environments regarding R&D and IPRs 
(as corporations strongly influence the patterns of collaboration 
structures). 
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Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Resources, Software, Supervision, Validation, Visualiza-
tion, Writing – original draft, Writing – review & editing, Funding 
acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data is available at https://www.ibcnetwork.org/e_research_ 
resource.php?id=3 and http://historico.oepm.es/patentes.php. 

Acknowledgements 

The authors express their gratitude to three anonymous referees 
whose comments and suggestions substantially helped to improve the 
quality of the study. Likewise, the authors acknowledge: i) useful com-
ments from Prof. Jochen Streb and attendees to the 2023 Economic 
History Seminars of the University of Mannheim where this study was 
presented; and ii) key insights and methodological assistance from Pablo 
Galaso, Sergio Palomeque, and their research team at the Instituto de 
Economia of Universidad de Montevideo. José L. Zofío thanks the 
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